Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Graeme J. Gainsford* and Gary B. Evans

Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand

Correspondence e-mail: g.gainsford@irl.cri.nz

Key indicators

Single-crystal X-ray study
$T=163 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.015 \AA$
R factor $=0.059$
$w R$ factor $=0.147$
Data-to-parameter ratio $=12.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Bromo-7-methoxy-2-(tetrahydropyran-2-yl)-pyrazolo[4,3-d]pyrimidine

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{O}_{2}$, the pyrimidine and pyrazole rings make a dihedral angle of $3.8(6)^{\circ}$. The pendant tetrahydropyran ring is in a chair conformation and its mean plane makes an interplanar angle of $52.5(6)^{\circ}$ with the pyrazole ring. There is a short $\mathrm{Br} \cdots \mathrm{O}$ intermolecular contact of 2.994 (7) \AA.

Comment

The title compound, (I), was studied in order to confirm the regioselectivity, based on ${ }^{13} \mathrm{C}$ NMR, of the critical tetra-hydropyranyl-protecting group. The crystal structure is built of isolated molecules (Fig. 1) and only weak intermolecular contacts e.g. $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{i}$ [symmetry code: (i) $x-1 / 2$, $3 / 2-y, z$] with $\mathrm{C} 5 \cdots \mathrm{O} 2^{\mathrm{i}}=3.29(1) \AA$. There is also a short intermolecular contact between Br 1 and $\mathrm{O} 1^{\text {ii }}$ of 2.994 (7) \AA [symmetry code: (ii) $-x, 1-y, z-1 / 2$]. A search of the Cambridge Structural Database (Allen \& Kennard, 1993; CCDC, 2002a) gives the (closest) similar interaction of $3.024 \AA$ in 5-bromo-11-ethylenedioxy-5-nitro-2-oxapentacyclo[7.3.0 ${ }^{3,7} \cdot \mathrm{O}^{4,12} \mathrm{O}^{6,11}$]dodecane (Watson et al., 1990) and, interestingly, this is the only interaction between the molecules in one direction in the lattice (CCDC, 2002b). Two other short $\mathrm{Br} \cdots \mathrm{O}$ intermolecular distances have been reported, viz. 3.094 (Gu et al., 1986) and $3.102 \AA$ (Tomilov et al., 1999), but in these latter cases there are further intermolecular contacts between the same pairs of molecules. There is also one close intramolecular interaction here, viz. $\mathrm{C}^{\prime}-\mathrm{H} 1^{\prime} \cdots \mathrm{Br} 1$ with $\mathrm{C}^{\prime} \cdots \mathrm{Br} 1=3.27$ (1) \AA.

(I)

The $\mathrm{C}-\mathrm{Br}$ distance is 1.85 (1) \AA, identical to that in 4-bromo-3-(3-pyridyl)sydnone (Hašek et al., 1979); $\mathrm{C}-\mathrm{Br}$ bond distances from $s p^{2}$-hybridized C atoms lie in the range 1.793$1.932 \AA$ (CCDC, 2002a). The fused five- and six-membered rings are each planar, with average deviations of 0.008 (6) and 0.007 (7) \AA, respectively; their least-squares planes form a dihedral angle of $3.8(6)^{\circ}$. The pendant tetrahydropyran ring ($\mathrm{O} 1 / \mathrm{C} 1^{\prime}-\mathrm{C} 5^{\prime}$) is in a chair conformation $[Q=0.57$ (1) \AA and θ $3.4(12)^{\circ}$; Boeyens, 1978] and the mean plane through this ring makes an angle of $52.5(6)^{\circ}$ with the pyrazole ring.

Received 5 August 2002 Accepted 19 August 2002 Online 23 August 2002

Figure 1
The molecular structure of (I) (Farrugia, 1997). Displacement ellipsoids are drawn at the 50% probability level.

Experimental

The title compound was prepared as described by Stone et al. (1979) and recrystallized from methanol.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{O}_{2}$
$M_{r}=313.16$
Orthorhombic, $P_{\circ}{ }_{2} 2_{1}$
$a=12.4224$ (4) \AA
$b=17.1489$ (5) \AA
$c=5.6680(1) \AA$
$V=1207.46$ (6) \AA^{3}
$Z=4$
$D_{x}=1.723 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2337
reflections
$\theta=2.9-25.8^{\circ}$
$\mu=3.41 \mathrm{~mm}^{-1}$
$T=163$ (2) K
Needle, pale yellow
$0.50 \times 0.06 \times 0.04 \mathrm{~mm}$

Data collection

Bruker $P 4$ diffractometer ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.290, T_{\text {max }}=0.876$
3279 measured reflections
1475 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.147$
$S=0.99$
1475 reflections
117 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 3$	$1.850(10)$	$\mathrm{N} 4-\mathrm{C} 5$	$1.251(12)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.343(11)$	$\mathrm{N} 6-\mathrm{C} 7$	$1.315(14)$
$\mathrm{N} 1-\mathrm{C} 7 A$	$1.360(12)$	$\mathrm{C} 3-\mathrm{C} 3 A$	$1.344(15)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7 A$	$103.6(8)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C1}^{\prime}$	$120.9(9)$
$\mathrm{Br} 1-\mathrm{C} 3-\mathrm{C} 3 A-\mathrm{N} 4$	$-3.9(18)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{Cl}^{\prime}-\mathrm{O} 1$	$102.2(10)$

The _measured_fraction_theta_max was low (0.76), resulting from a collection algorithm limit error with the maximum h index 12 instead of 15. The data-to-parameter ratio and Flack (1983) parameter s.u. are adequate, and atoms $\mathrm{N} 1, \mathrm{~N} 4, \mathrm{~N} 6, \mathrm{C} 3, \mathrm{C} 5, \mathrm{C} 7, \mathrm{C} 1, \mathrm{C} 2$ and C 3 could only be refined with isotropic displacement parameters. All H atoms were included in the riding-model approximation with an isotropic displacement parameter constrained to 1.2 times that of the $U_{\text {eq }}$ value of their parent atom (SHELXL97; Sheldrick, 1997). The maximum and minimum residual electron-density peaks are 0.06 and $1.00 \AA$ from atom Br1.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37. Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
CCDC (2002a). ConQuest. Version 1.3.1. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England.
CCDC (2002b). Mercury. Version 1.1. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gu, Y., Yamane, T., Ashiba, T., Hashimoto, K. \& Sumitomo, H. (1986). Bull. Chem. Soc. Jpn, 59, 2085-2088.
Hašek, J., Obrda, J., Huml, K., Nespurek, S. \& Sorm, M. (1979). Acta Cryst. B35, 437-440.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stone, T. E., Eustace, E. J., Pickering, M. V. \& Daves, G. D. Jr (1979). J. Org. Chem. 44, 505-509.
Tomilov, Y. V., Kostyuchenko, I. V., Shulishov, E. V., Averkiev, B. B., Antipin, M. Y. \& Nefedov, O. M. (1999). Izv. Akad. Nauk SSSR Ser. Khim. p. 1328.

Watson, W. H., Kashyap, R. P., Marchand, A. P. \& Rajapaska, D. (1990). Acta Cryst. C46, 2191-2194.

